d

‘BZ}S&\‘)/-‘"H wri
=, YYOr

sARCELONg
——

JBoOsSs Seam

Gavin King & Thomas Heute

JBoss

October 11th 2005

© JBoss Inc. 2005

Why do we need it ?

D

How is it different 7

= EJB 3.0 and JSF are great, but how do they work
together ?

= Clustering technology has improved to the point
where stateful architectures can be efficiently
scaled

JBoss.) World

wARCELD)
=L

Seam component model

= Layered architecture

= Web tier calls EJB

- Stateless components

- XML

= Dependency injection

= Ul validation

= Request-oriented

= Shared, second-level data
cache

- State management in code

= Don't repeat yourself
= Web tier is EJB

- Stateful components
= Annotations

- Bijection

= Model constraints

= Conversations

= Natural cache of
conversational objects

- Contextual, declarative state
management

JBoss World

wARCELD)
=

Context model

= “Session” is not a meaningful construct in terms of the

application

= Seam unifies the component models of JSF and EJB 3.0
v Allows you to use EJB components as JSF managed beans
v “One kind of stuff”
= Component types
v Any JavaBean
v Stateful session beans
v Entity beans
v Stateless session beans
= Component type limitations
v Stateless session beans always belong to STATELESS
pseudo-context

v Entity beans are not intercepted, so they can’t have
bijection, context demarcation, etc.

JBoss. World

wARCELD)
=

State management

v We need new, logical contexts
= Seam defines the following contexts
EVENT (request)
CONVERSATION (logical sequence of requests)
SESSION (servlet session)
PROCESS (the long-running business process)
APPLICATION (servlet context)

v
v
v
v
v
v STATELESS (all stateless components)

JBoss World

wARCELD)
=

= Component instances are associated with a context variable
v Component name defined by the @Name annotation
v Component scope given by @Scope
= So, we can refer to the User instance by name
v Seam might even instantiate it automatically
v @In(create=true) private User currentUser;
v <h:inputText value=“#{currentUser.name}”/>
= The state of the object is cleaned up when the context ends
v Reduces memory leakage
- Lifecycle methods
v @Create when Seam instantiates the component
v (@Destroy when the context ends

JBoss. World

wARCELD)
=

Example code — Java bean Example code - JSF

<div class="entry">

username"'>Username:</h:outputLabel>
username™ value="#{user .usernane}"/>

errors"><h:message for="username" />

#Scope (SESSION)
public class User implements Serializable

</div>

<div class="entry">
<h:zoutputLabel fof
<h:inputText

public User(Q) {+ L Span class=

<div class="entry">
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputSecret assword" value="#{user.password}" />

<h:message for="password" />

</div>

<div class="entry">
<h: =

String username;
string password;
private String name;

“name**>Real Name:</h:outputLabel>
name” value="#{user_name}" />

rrors*><h:message for="name" />

public String getName() { return name; }

£

void setName(String name) { this.name = name; }

public String getPassword() { return password; }

“>Verify Password:</h:outputLabel>
y #{register.verify}" />

ard <h:message for="verify" />

public void setPassword(String password) { this.password = password; }

i i . </div>
public String getUsername() { return username; } <div class="entry errors"><h:messages globalOnly="true" /></div>
<div class="entry">

public void setUsername(String username) { thi

-username = username; } <h:commandButton val

Register” {register.register}" class="button"/>
action="login" class="button"/>

N N
‘Bosrj) World ‘Bosrj) World
-nﬂ:li__\(‘_j-u-s -ﬁﬂ:li_\(_l-u-s

Conversation context Conversation context

= A conversation is a logical scope, demarcated by the = Server-side conversations
application v Conversation state held in HttpSession
v Bigger than a request, smaller than a login session v Destroyed when conversation ends
¥ Multiple concurrent conversations per user (multiple v Or by conversation timeout
windows)

<

N] . - . . lient-si nversation
Provides isolation of work done in different windows! Client-side conversations

v For now, demarcation done by annotation of action listener Conversational state serialized to browser
methods: @Begin @End v Use JavaBeans instead of SFSBs

v You should define the scope based upon functional v Eventually, we will provide client-side SFSB
requirements and performance considerations
v Eventually, we will provide client-side SFSB

\BQSS:./WQ;;? Example code (1/2)

00

@stateful

uAR.c_ELON“ @Name (“hotelBooking'™)
—— Interceptor(Seaninterceptor cla
GConversational (i fNotBegunOutcome="main")
@Loggedin
public class ingAction i ing, Serializable

{

. private String searchPattern;

Seam boo kl ng demo public void setSearchPattern(String pat) { searchPattern=pat; }
GBegin

public String findQ)

{

hotel = null;

hotel en.createQuery("
_setParameter(“'search”,” searchPattern)
_setiaxResults(50)
.getResultList();

return "'m;

© JBoss Inc. 2005 12

Example code (2/2)

public String selectHotel ()

if (hotel
setHotel
return “selected";

ull) return “mai

@End
public String confirm()
{

if (booking==null || hotel==null) return “main";
em.persist(booking) ;

1og. info("booking confirmed");

return “confirmed";

JBoss.) World

wARCELD)
=

Business process context

= jBPM process instance defines a scope
v Spans multiple conversations with multiple users
v In the context of a business process, usually, a conversation is
a jBPM task
= jBPM engine provides:
v Process flow and demarcation in XML

v Provides the mechanism for persisting process state (ie. Seam
components in the PROCESS context)

v User task list

v Transition events (these should have their own Seam
contexts)

= Seam provides:
v Transparency
v Abstraction

JBoss World

wARCELD)
=

Data model constraints

= Most “validation” is really just enforcing constraints that
apply to the data model
v Don't repeat yourself applies here

« Hibernate Validator provides a set of annotations for
expressing constraints directly on the entity
v Or on any other object

* These constraints will now apply at all level of the
application
v When receiving user input
v Before writing to database
v When generating DDL
v (Anywhere else you like!)

= You can add “extra” validation only when you need it
v In the JSF form
v In the action listener method

JBos

wARCELD)
=L

o

N
s) World

Conversational page flow

= JSF navigation rules define page flow
v But navigation rules are totally ad hoc

v There is no “demarcation” of what user interaction a rule
belongs to

v Conversation demarcation is in the annotations
= Much better solution
v Define page flow using jBPM

v Then, a jBPM process instance will naturally demarcate the
conversation
v We could have nested conversations

JBos :}/Wca_ﬁ_d

wARCELD)
=

Bijection

= Dependency injection does not work for stateful
components
v Stateful instances are not interchangeable

v Components in wider scopes need to use components in
narrower scopes

= Bijection is
v Dynamic (invocation-time)
v Contextual
v Bidirectional (read + write)
= Don’t think about dependency!
v Think in terms of aliasing context variables to attributes of the
component:
@In @0ut private User currentUser;
v Especially useful for entities:
currentUser = em.merge(currentUser);
v 1oC addresses dependencies among stateless services;
bijection addresses collaboration of stateful components in
various contexts

JBoss. World

wARCELD)
=
16

Example code (1/3)

C
public class Booking implements Serializable

private Long id;

private User user;
private Hotel hotel;
private Date checkinDate;
private Date checkoutDate;
private String creditCard;

public Booking() {

@1d(generate=GeneratorType.AUTO)
public Long getld()

return id;
public void setld(Long id)
this.id = id;
otNull

asic(temporal Type=TemporalType.DATE)
public Date getCheckinDate()

return checkinDate;

wARCELD)
=L

Example code (2/3)

public void setCheckinDate(Date datetine)
this.checkinbate = datetime;

@ManyToOne @NotNul I

public Hotel getHotel()

return hote!

public void setHotel(Hotel hotel)
this.hotel = hotel;
@ManyToOne @NotNull
public User getUser()
return user;
b
public void setUser(User user)

this.user = user;

JBoss.) World

wARCELD)
=

Example code (3/3)

State and clustering

= Traditional SFSB implementation:
v Stickiness or cluster-wide replication (or write to
database!)
v Replicate whole bean at end of transaction
= JBoss 5 SFSB implementation:
v Stickiness with replication to n-of-m nodes
v Replicate only the attributes which actually changed
= Can't | just use the HttpSession?
v Fine-grained passivation and passivation policies
v Automatic change detection (no need to call
setAttribute() to force replication)

v Potentially, a stateful bean can outlast a login session
(state associated with the long-running business process)

JBoss World

wARCELD)
=

u\:lL(lev\poralType Temporal Type . DATE)
OtNuU
publlc Da(e getCheckoutDate()

return checkoutDate;
X
public void setCheckoutDate(Date checkoutDate)
this_checkoutDate = checkoutDate;
otNulll (message="Credit card number is required")
ength(min=16, ma Credit card number must 16 digits long"™)

@Pattern(regex="\\d* redit card number must be numeric")
public String getCre

return creditCard;

public void setCreditCard(String creditCard)
{

is.creditCard = creditCard;

JBos :}/Wca_ﬁ_d

wARCELD)
=

Conversations and caching

Conversations and persistence

= EJB goes some way toward a solution
- Transaction scoped persistence context (LIE still possible when
rendering view, or in the “next” transaction)
- Extended persistence context for SFSB (LIE still possible when
rendering view)
= Seam completely solves this problem
= You can easily have a conversation scoped Seam-managed
persistence context
- The Seam-managed context spans the entire request cycle,
including render response
= Two transactions per request: one during update model
values/invoke application, the next during render response
= This ensures that all write operations are successful before
displaying page to the user
- Objects are never detaches, so no need to use merge() or
saveOrUpdate()
- Aslong as you access your entities within the scope of the

ARCELONY

=4

= Traditional web architecture avoids stateful components
v All state goes to database or client on each request
v Database is the least scalable tier
v Serializing state to the client is also expensive
= To improve performance, people add a shared second-level
cache
v Oops, we just became stateful
v Managing consistency of a shared cache with the database is a
virtually intractable problem in full generality
v Keeping unshared data in a shared cache has inefficiencies
(LRU algorithm is suboptimal)
= Instead, conversations give you a natural cache of data
associated with the user
v Consistency is well-defined (optimistic locking) without
overhead or cluster-wide replication
v Eviction is efficient (when conversation ends)
= In practice, a combination of the two strategies makes
sense
v Some data is truly shared

JBoss. World

wARCELD)
=
22

Conversations and persistence

= Hibernate_users all complain about
Lazyl ializationException and NonUniqueException
v No, you absolutely cannot just start fetching data from the
database outside of a persistence context!
v You would totally break association integrity and expose your
application to far more insidious problems with data aliasing
v Yes, you do have to end the persistence context somewhere,
otherwise your object graph will gradually expand, as more
and more associations are fetched, until you get OOME
v This is a basic limitation of all data access technologies in an
online environment, not a bug in Hibernate!
= Three solutions to this problem
1. Do like JDBC: don't have associations
2. Do like EJB2/DTO: use an assembly phase (this is implicit in
the DTO pattern)
3. Use a conversation-scoped persistence context

ARCELONY

=4

Interceptors

= EJB 3.0 has a nice way to define interceptors for session
bean components

v Annotate the session bean with
@Interceptor(LoggedIninterceptor.class)

v But, on second thoughts, it's a bit noisy
= Instead, apply the @Interceptor annotation as a meta-
annotation
@Interceptor(Loggedininterceptor.class)
public @interface Loggedin {}

= Oh, and you can use this for plain JavaBeans, too

JBoss.) World

wARCELD)
=

Seam outside Java EE 5

Testing Seam

= You can unit test Seam components in TestNG or JUnit
v They are all just POJOs
= You can integration test Seam applications in TestNG or

Junit
v Embeddable EJB3 and Microcontainer can run inside a unit
test

Seam includes a framework for integration testing

v Basically, you write a test script that reproduces the
operations performed by JSF when the form is submitted
(setting model values, invoking action listener method) and
then makes a set of assertions

v This tests the entire application, with the exception of the
view template

v Its actually really easy

JBoss World

wARCELD)
=

= Seam is conceived for use in a Java EE 5 environment,

but:

v you can use Seam with JBoss Embeddable EJB3, in any
appserver

v Yes, even in Tomcat

v If you are scared of EJB, you can use Seam with JavaBeans
components and Hibernate

v If you want to do this in Tomcat, you need to use the JBoss
Microcontainer to provide JTA/JNDI/JCA

JBoss.) World

wARCELD)
=L

Roadmap

= Seam 1.0 beta 2

v Improved jBPM integration including task list JSF

component

v Tomcat integration

v Support in Hibernate Tools
= Seam 1.0 final

v jBPM conversation flow definition

v Portal integration

¥ More improvements to jBPM integration
= Future

v Seam for web services

v Seam for rich clients

JBoss. World

wARCELD)
=
28

