
1

© JBoss Inc. 2005

JBoss Seam

Gavin King & Thomas Heute

JBoss

October 11th 2005

2

Why do we need it ?

• EJB 3.0 and JSF are great, but how do they work
together ?

• Clustering technology has improved to the point
where stateful architectures can be efficiently
scaled

3

How is it different ?

• Layered architecture
• Web tier calls EJB
• Stateless components
• XML
• Dependency injection
• UI validation
• Request-oriented
• Shared, second-level data

cache
• State management in code

• Don’t repeat yourself
• Web tier is EJB
• Stateful components
• Annotations
• Bijection
• Model constraints
• Conversations
• Natural cache of

conversational objects
• Contextual, declarative state

management

4

Seam component model

• Seam unifies the component models of JSF and EJB 3.0
Allows you to use EJB components as JSF managed beans
“One kind of stuff”

• Component types
Any JavaBean
Stateful session beans
Entity beans
Stateless session beans

• Component type limitations
Stateless session beans always belong to STATELESS
pseudo-context
Entity beans are not intercepted, so they can’t have
bijection, context demarcation, etc.

5

Context model

• “Session” is not a meaningful construct in terms of the
application

We need new, logical contexts

• Seam defines the following contexts
EVENT (request)
CONVERSATION (logical sequence of requests)
SESSION (servlet session)
PROCESS (the long-running business process)
APPLICATION (servlet context)
STATELESS (all stateless components)

6

State management

• Component instances are associated with a context variable
Component name defined by the @Name annotation
Component scope given by @Scope

• So, we can refer to the User instance by name
Seam might even instantiate it automatically
@In(create=true) private User currentUser;
<h:inputText value=“#{currentUser.name}”/>

• The state of the object is cleaned up when the context ends
Reduces memory leakage

• Lifecycle methods
@Create when Seam instantiates the component
@Destroy when the context ends

2

7

Example code – Java bean
@Entity
@Name("user")
@Scope(SESSION)
public class User implements Serializable
{

private String username;
private String password;
private String name;

public User() {}

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public String getPassword() { return password; }

public void setPassword(String password) { this.password = password; }

@Id
public String getUsername() { return username; }

public void setUsername(String username) { this.username = username; }
}

8

Example code - JSF
<div class="entry">
<h:outputLabel for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{user.username}"/>

<h:message for="username" />

</div>
<div class="entry">
<h:outputLabel for="name">Real Name:</h:outputLabel>
<h:inputText id="name" value="#{user.name}" />

<h:message for="name" />

</div>
<div class="entry">
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputSecret id="password" value="#{user.password}" />

<h:message for="password" />

</div>
<div class="entry">
<h:outputLabel for="verify">Verify Password:</h:outputLabel>
<h:inputSecret id="verify" value="#{register.verify}" />

<h:message for="verify" />

</div>
<div class="entry errors"><h:messages globalOnly="true" /></div>
<div class="entry">
<h:commandButton value="Register" action="#{register.register}" class="button"/>
<h:commandButton value="Cancel" action="login" class="button"/>

</div>

9

Conversation context

• A conversation is a logical scope, demarcated by the
application

Bigger than a request, smaller than a login session
Multiple concurrent conversations per user (multiple
windows)
Provides isolation of work done in different windows!
For now, demarcation done by annotation of action listener
methods: @Begin @End
You should define the scope based upon functional
requirements and performance considerations
Eventually, we will provide client-side SFSB

10

Conversation context

• Server-side conversations
Conversation state held in HttpSession

Destroyed when conversation ends
Or by conversation timeout

• Client-side conversations
Conversational state serialized to browser
Use JavaBeans instead of SFSBs
Eventually, we will provide client-side SFSB

© JBoss Inc. 2005

Seam booking demo

12

Example code (1/2)
@Stateful
@Name("hotelBooking")
@Interceptor(SeamInterceptor.class)
@Conversational(ifNotBegunOutcome="main")
@LoggedIn
public class HotelBookingAction implements HotelBooking, Serializable
{

private String searchPattern;
public void setSearchPattern(String pat) { searchPattern=pat; }
…
@Begin
public String find()
{

hotel = null;
hotels = em.createQuery(“...”)

.setParameter("search", searchPattern)

.setMaxResults(50)

.getResultList();
return "main";

}
…

3

13

Example code (2/2)
public String selectHotel()
{

if (hotels==null) return "main";
setHotel();
return "selected";

}
…
@End
public String confirm()
{

if (booking==null || hotel==null) return "main";
em.persist(booking);
log.info("booking confirmed");
return "confirmed";

}
}

14

Conversational page flow

• JSF navigation rules define page flow
But navigation rules are totally ad hoc
There is no “demarcation” of what user interaction a rule
belongs to
Conversation demarcation is in the annotations

• Much better solution
Define page flow using jBPM
Then, a jBPM process instance will naturally demarcate the
conversation
We could have nested conversations

T1

15

Business process context

• jBPM process instance defines a scope
Spans multiple conversations with multiple users
In the context of a business process, usually, a conversation is
a jBPM task

• jBPM engine provides:
Process flow and demarcation in XML
Provides the mechanism for persisting process state (ie. Seam
components in the PROCESS context)
User task list
Transition events (these should have their own Seam
contexts)

• Seam provides:
Transparency
Abstraction

16

Bijection

• Dependency injection does not work for stateful
components

Stateful instances are not interchangeable
Components in wider scopes need to use components in
narrower scopes

• Bijection is
Dynamic (invocation-time)
Contextual
Bidirectional (read + write)

• Don’t think about dependency!
Think in terms of aliasing context variables to attributes of the
component:

@In @Out private User currentUser;
Especially useful for entities:

currentUser = em.merge(currentUser);
IoC addresses dependencies among stateless services;
bijection addresses collaboration of stateful components in
various contexts

17

Data model constraints

• Most “validation” is really just enforcing constraints that
apply to the data model

Don’t repeat yourself applies here
• Hibernate Validator provides a set of annotations for

expressing constraints directly on the entity
Or on any other object

• These constraints will now apply at all level of the
application

When receiving user input
Before writing to database
When generating DDL
(Anywhere else you like!)

• You can add “extra” validation only when you need it
In the JSF form
In the action listener method

18

Example code (1/3)
@Entity
@Name("booking")
public class Booking implements Serializable
{

private Long id;
private User user;
private Hotel hotel;
private Date checkinDate;
private Date checkoutDate;
private String creditCard;

public Booking() {}

@Id(generate=GeneratorType.AUTO)
public Long getId()
{

return id;
}
public void setId(Long id)
{

this.id = id;
}

@NotNull
@Basic(temporalType=TemporalType.DATE)
public Date getCheckinDate()
{

return checkinDate;
}

4

19

Example code (2/3)
public void setCheckinDate(Date datetime)
{

this.checkinDate = datetime;
}

@ManyToOne @NotNull
public Hotel getHotel()
{

return hotel;
}
public void setHotel(Hotel hotel)
{

this.hotel = hotel;
}

@ManyToOne @NotNull
public User getUser()
{

return user;
}
public void setUser(User user)
{

this.user = user;
}

20

Example code (3/3)
@Basic(temporalType=TemporalType.DATE)
@NotNull
public Date getCheckoutDate()
{

return checkoutDate;
}
public void setCheckoutDate(Date checkoutDate)
{

this.checkoutDate = checkoutDate;
}

@NotNull(message="Credit card number is required")
@Length(min=16, max=16, message="Credit card number must 16 digits long")
@Pattern(regex="\\d*", message="Credit card number must be numeric")
public String getCreditCard()
{

return creditCard;
}

public void setCreditCard(String creditCard)
{

this.creditCard = creditCard;
}

}

21

State and clustering

• Traditional SFSB implementation:
Stickiness or cluster-wide replication (or write to
database!)
Replicate whole bean at end of transaction

• JBoss 5 SFSB implementation:
Stickiness with replication to n-of-m nodes
Replicate only the attributes which actually changed

• Can’t I just use the HttpSession?
Fine-grained passivation and passivation policies
Automatic change detection (no need to call
setAttribute() to force replication)
Potentially, a stateful bean can outlast a login session
(state associated with the long-running business process)

22

Conversations and caching

• Traditional web architecture avoids stateful components
All state goes to database or client on each request
Database is the least scalable tier
Serializing state to the client is also expensive

• To improve performance, people add a shared second-level
cache

Oops, we just became stateful
Managing consistency of a shared cache with the database is a
virtually intractable problem in full generality
Keeping unshared data in a shared cache has inefficiencies
(LRU algorithm is suboptimal)

• Instead, conversations give you a natural cache of data
associated with the user

Consistency is well-defined (optimistic locking) without
overhead or cluster-wide replication
Eviction is efficient (when conversation ends)

• In practice, a combination of the two strategies makes
sense

Some data is truly shared

23

Conversations and persistence

• EJB goes some way toward a solution
• Transaction scoped persistence context (LIE still possible when

rendering view, or in the “next” transaction)
• Extended persistence context for SFSB (LIE still possible when

rendering view)
• Seam completely solves this problem

• You can easily have a conversation scoped Seam-managed
persistence context

• The Seam-managed context spans the entire request cycle,
including render response

• Two transactions per request: one during update model
values/invoke application, the next during render response

• This ensures that all write operations are successful before
displaying page to the user

• Objects are never detaches, so no need to use merge() or
saveOrUpdate()

• As long as you access your entities within the scope of the
conversation, you will never get
LazyInitializationException or his friend
NonUniqueObjectException

24

Conversations and persistence

• Hibernate users all complain about
LazyInitializationException and NonUniqueException

No, you absolutely cannot just start fetching data from the
database outside of a persistence context!
You would totally break association integrity and expose your
application to far more insidious problems with data aliasing
Yes, you do have to end the persistence context somewhere,
otherwise your object graph will gradually expand, as more
and more associations are fetched, until you get OOME
This is a basic limitation of all data access technologies in an
online environment, not a bug in Hibernate!

• Three solutions to this problem
1. Do like JDBC: don’t have associations
2. Do like EJB2/DTO: use an assembly phase (this is implicit in

the DTO pattern)
3. Use a conversation-scoped persistence context

5

25

Interceptors

• EJB 3.0 has a nice way to define interceptors for session
bean components

Annotate the session bean with
@Interceptor(LoggedInInterceptor.class)

But, on second thoughts, it’s a bit noisy
• Instead, apply the @Interceptor annotation as a meta-

annotation
@Interceptor(LoggedInInterceptor.class)
public @interface LoggedIn {}

• Oh, and you can use this for plain JavaBeans, too

26

Seam outside Java EE 5

• Seam is conceived for use in a Java EE 5 environment,
but:

you can use Seam with JBoss Embeddable EJB3, in any
appserver
Yes, even in Tomcat
If you are scared of EJB, you can use Seam with JavaBeans
components and Hibernate
If you want to do this in Tomcat, you need to use the JBoss
Microcontainer to provide JTA/JNDI/JCA

27

Testing Seam

• You can unit test Seam components in TestNG or JUnit
They are all just POJOs

• You can integration test Seam applications in TestNG or
JUnit

Embeddable EJB3 and Microcontainer can run inside a unit
test
Seam includes a framework for integration testing
Basically, you write a test script that reproduces the
operations performed by JSF when the form is submitted
(setting model values, invoking action listener method) and
then makes a set of assertions
This tests the entire application, with the exception of the
view template
Its actually really easy

28

Roadmap

• Seam 1.0 beta 2
Improved jBPM integration including task list JSF
component
Tomcat integration
Support in Hibernate Tools

• Seam 1.0 final
jBPM conversation flow definition
Portal integration
More improvements to jBPM integration

• Future
Seam for web services
Seam for rich clients

